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Abstract—  An accelerometer is a device that measures proper 

acceleration. Properacceleration,beingthe acceleration (or rate 

of change of velocity) of a body in its own instantaneous rest 

frame,is not the same as coordinate acceleration, being the 

acceleration in a fixed coordinate system. For example, an 

accelerometer at rest on the surface of the Earth will measure an 

acceleration due to Earth's gravity, straight upwards (by 

definition) of g ≈ 9.81 m/s2. By contrast, accelerometers in free 

fall (falling toward the center of the Earth at a rate of about 

9.81 m/s2) will measure zero.In general, accelerometer-based 

position and velocity estimates from low-cost sensors (hundreds of 

US dollars instead of tens of thousands) are very poor and are 

simply unusable.  This isn't because the accelerometers 

themselves are poor, but because the orientation of the sensor 

must be known with a high degree of accuracy so that gravity 

measurements can be distinguished from the physical acceleration 

of the sensor.  Even small errors in the orientation estimate will 

produce extremely high errors in the measured acceleration, 

which translate into even larger errors in the velocity and position 

estimates. 

IndexTerms 

—Vehicles, Acceleration, Estimation, Sensors, Accelerometers, Roa

ds, Global Positioning System 

I. INTRODUCTION 

Android applications are composed of one or more 

application components (activities, services, content 

providers, and broadcast receivers).Each component 

performs a different role in the overall application behavior, 

and each one can be activated individually (even by other 

applications).The manifest file must declare all components 

in the application and should also declare all application 

requirements, such as the minimum version of Android 

required and any hardware configurations required.Non-code 

application resources (images, strings, layout files, etc.) 

should include alternatives for different device 

configurations (such as different strings for different 

languages).The smart phone-based vehicular applications 

become more and more popular to analyze the increasingly 

complex urban traffic flows and facilitate more intelligent 

driving experiences including vehicle localization[1][2], 

enhancing driving safety[3][4], driving behavior 

analysis[5][6] and building intelligent transportation 

systems[7][8]. Among these applications, the vehicle speed is 

an essential input. Accurate vehicle speed estimation could 

make those vehicle-speed dependent applications more 

reliable under complex traffic systems in urban 

environments. Generally, the speed of a vehicle can be 

obtained from GPS. However, GPS embedded in 

smartphones often suffers from the urban canyon 

environment [9], which would cause low availability and 

accuracy. Besides, the low update rate of GPS is not able to 

keep up with the frequent change of the vehicle speed in 

urban driving environments. Additionally, continuously 

using GPS drains the phone battery quickly. Thus, it is hard 

to obtain accurate vehicle speed relying on GPS for 

applications requiring real-time or high accuracy speed 

estimations. Besides vehicle speed estimation based on GPS, 

there are a couple of alternatives by using either the OBD-II 

interface [3] or smartphone’s cell tower signals [10][11]. 

Although the speed obtained from OBD-II is quite accurate, 

this approach relies on an additional OBDII adapter. Using 

cell tower signal changes on smartphones to perform vehicle 

speed tracking, [10][11] show a promising direction that the 

smart phone on the vehicle can be employed to facilitate 

vehicle speed estimation.  

However, the existing studies utilizing Derivative 

Dynamic Time Warping (DDTW) algorithm that introduces 

large overhead on collecting offline trace and prevents 

large-scale deployment. Also, the speed estimation accuracy 

of DDTW suffers from the coarse-grained signal 

information. 

Moving along this direction, in this paper we consider a 

sensing approach, which uses smart phone sensors to sense 

natural driving conditions, to derive the vehicle speed 

without requiring any additional hardware. The basic idea is 

to obtain the vehicle’s speed estimation by integrating the 

phone’s accelerometer readings along the vehicle’s moving 

direction over time. While the idea of integrating the 

acceleration values over time seems simple, a number of 

challenges arise in practice. First, the accelerometer readings 

are noisy and affected by various driving environments. 

Second, the speed estimation should be real-time and 

accurate. Finally, the solution should be lightweight and 

computational feasible on smartphones. 

We first show the vehicle speed estimation using the 

integral of accelerometer’s readings through real road driving 

Acceleration Discovery of vehicle in 

Natural Driving condition 
 

Shalini M S       Prasanna G Patil 

M.Tech Student     Assistant Professor 

Department of  CSE 

Maharaja  Institute of Technology Mysore ,India 



 

     ISSN : 2454-9924 

2 

experiments in two different cities. We find that directly 

performing integration over acceleration results in large 

deviations from the true speed of the vehicle. The interesting 

observation is that the error between the integral value and 

true speed increases almost linearly over time, and is 

independent of different phone types. This indicates that the 

changes of the acceleration error are very small over time 

which can be corrected if we can derive the speed errors at 

some time points. Based on this simple yet useful finding, we 

develop a vehicle speed estimation system, SenSpeed, which 

utilizes smart phone sensors (accelerometer and gyroscope) 

to sense the practical driving conditions, which can be 

exploited to eliminate the acceleration errors and estimate 

vehicle speed accurately. 

In particular, our system, SenSpeed, identifies unique 

reference points from the natural driving conditions to infer 

the vehicle’s speed at each reference point grounded on 

different features presented by these reference points. Such 

reference points include making turns, stopping (at a traffic 

light or stop sign or due to road traffic) and passing through 

uneven road surfaces (e.g., speed bumps or potholes). Based 

on the speed inferred from the reference points, SenSpeed 

measures the acceleration error between each two adjacent 

reference points and eliminates such errors to achieve 

high-accuracy speed estimation. The main advantage of 

SenSpeed is that it senses the unique features in natural 

driving conditions through simple smart phone sensors to 

facilitate vehicle speed estimation. Furthermore, SenSpeed is 

easy to implement and computational feasible on standard 

smart phone platforms. Our extensive experiments in both 

Shanghai, China and New York City, USA validate the 

accuracy and the feasibility of using our system in real 

driving environments. 

EXISTING SYSTEM: 

The existing studies utilizing Derivative Dynamic Time 

Warping (DDTW) algorithm introduces large overhead on 

collecting offline trace and prevents large-scale deployment. 

Also, the speed estimation accuracy of DDTWsuffers from 

the coarse-grained signal information.In the existing work, 

there are two vehicle speed estimation mechanisms deployed 

on highways or main roads. One is employing the loop 

detectors, and the other is using traffic cameras. These 

solutions all rely on predeployed infrastructures that incur 

installation cost. The traffic camera could be installed in 

urban environments, but it suffers low accuracy, bad weather 

conditions and high maintenance cost. 

DISADVANTAGES OF EXISTING SYSTEM: 

GPS embedded in smartphones often suffers from the urban 

canyon environment, which could result in low availability and 

accuracy. In addition, the low update rate of GPS is not able to 

keep up with the frequent change of the vehicle speed in urban 

driving environments. Moreover, continuously using GPS drains 

the phone battery quickly. Thus, it is hard to obtain accurate 

vehicle speed relying on GPS for applications requiring real-time 

or high-accuracy speed estimations.The accelerometer readings 

are noisy and affected by various driving environments. The 

speed estimation is not real-time and accurate. The solution is not 

lightweight and computational not feasible on smartphones. 

PROPOSED SYSTEM: 

In this paper we consider a sensing approach, which uses 

smart phone sensors to sense natural driving conditions, to 

derive the vehicle speed without requiring any additional 

hardware. The basic idea is to obtain the vehicle’s speed 

estimation by integrating the phone’s accelerometer readings 

along the vehicle’s moving direction over time. While the 

idea of integrating the acceleration values over time seems 

simple, a number of challenges arise in practice. We propose 

to perform accurate vehicle speed estimation by sensing 

natural driving conditions using smart phone sensors.We 

study the impact of the acceleration error on the speed 

estimation results obtained from the integral of the phone’s 

accelerometer readings.We exploit three kinds of reference 

points sensed from natural driving scenarios to infer the 

vehicle speed at each reference point, which could be utilized 

to reduce the acceleration error that affect the accuracy of 

vehicle speed estimation.We develop a vehicle speed 

estimation system, Sen-Speed, which utilizes the information 

obtained from the reference points to measure and eliminate 

the acceleration error and achieves high accuracy speed 

estimation. 

ADVANTAGES OF PROPOSED SYSTEM: 

     Our system, SenSpeed, identifies unique reference points 

from the natural driving conditions to infer the vehicle’s 

speed at each reference point grounded on different features 

presented by these reference points. Such reference points 

include making turns, stopping (at a traffic light or stop sign 

or due to road traffic) and passing through uneven road 

surfaces (e.g., speed bumps or potholes). Based on the speed 

inferred from the reference points, SenSpeed measures the 

acceleration error between each two adjacent reference points 

and eliminates such errors to achieve high-accuracy speed 

estimation. The main advantage of SenSpeed is that it senses 

the unique features in natural driving conditions through 

simple smart phone sensors to facilitate vehicle speed 

estimation. Furthermore, SenSpeed is easy to implement and 

computational feasible on standard smart phone platforms. 

II. RELATED WORK 

In this section, we review the existing work on vehicle 

speed estimation, which can be categorized as follows. 

Estimation using pre-deployed infrastructures: In the existing 

work, there are two vehicle speed estimation mechanisms 

deployed on highways or main roads. One is employing the 

loop detectors[12][13], and the other is using traffic 

cameras[8]. These solutions all rely on pre-deployed 

infrastructures that incur installation cost. The traffic camera 

could be installed in urban environments, but it suffers low 

accuracy, bad weather conditions and high maintenance cost. 
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Estimation using additional devices: OBD-II adapter [3] is a 

popular interface to provide the vehicle speed in real-time. 

Acoustic wave sensors [14] [15] are utilized to estimate the 

vehicle speed in open environments. Furthermore, traffic 

magnetic sensors are also employed to capture the vehicle 

speed[16]. These approaches need to install additional 

hardware to perform speed estimation. 

 

Fig. 1. Illustration of the vehicle’s coordinate system and the 

smartphone’s coordinate system. 

Estimation using phones: To eliminate the need of 

predeployed infrastructures and additional hardware, recent 

studies concentrate on using cell phones to measure the 

vehicle speed. In particular, [17][18] use GPS or sub-sampled 

GPS to drive the vehicle speed. Although GPS is a simple 

way to obtain vehicle speed, the urban canyon environment 

and the low update frequency of GPS make it difficult to 

accurately capture the frequent changing vehicle speed in 

urban environments. And continuously using GPS causes 

quicker battery drainage on smartphones. Knowing the 

drawbacks of using GPS, [11] [10] estimate the vehicle speed 

by warping mobile phone signal strengths and use the 

handovers between base stations to measure the vehicle 

speed. These solutions need to build a signal database which 

may incur high labor cost and cannot achieve high estimation 

accuracy. 

Obtaining the vehicle speed becomes more and more 

important in supporting large amounts of vehicular 

applications. Our work is different from the previous studies 

in that we explore a smart phone-enabled sensing approach 

based on natural driving conditions without the need of GPS 

or additional hardware. 

III. MATH 

We first describe how to obtain the vehicle speed from 

smart phone sensors. The vehicle’s acceleration can be 

obtained from the accelerometer sensor in the smart phone 

when a phone is aligned with the vehicle. Suppose the 

accelerometer’s y-axis is along the moving direction of the 

vehicle as shown in Fig.1. 

We could then monitor the vehicle acceleration by 

retrieving readings from the accelerometer’s y-axis. The 

vehicle speed can then be calculated from the integral of the 

acceleration data over time: 

S peed(T) = S peed(0) +ƪacc(t) dt --------(1) 

where S peed(T) is the vehicle speed at time T and acc(t) is 

the vehicle acceleration function of each time instant t. 

Instead of producing a continuous function acc(t), the 

accelerometer in practice takes a series of the vehicle 

acceleration samples at a certain sampling rate. Thus the 

vehicle speed can be transformed as 

S peed(T) = S peed(0) +ƪ1/kaccy(i) -------- (2) 

where k is the sample rate of the accelerometer and accy(i) 

is the ith sample, i.e. the ith received reading from the 

accelerometer’s axis. Therefore, in order to obtain the vehicle 

speed, we take a series of the acceleration samples by 

monitoring the accelerometer continuously. 

Although the basic idea of using smart phone sensors to 

estimate vehicle speed is simple, it is challenging to achieve 

high-accuracy speed estimations. The most obvious problem 

is that the noise from sensor readings cause serious errors in 

the estimation results. Such sensor readings are affected by 

various noise encountered while driving such as engine 

vibrations, white noise, etc. And the estimation errors are 

accumulated when integrating the accelerometer’s readings 

over time.To study the impact of the accumulative error on 

the speed estimation’s accuracy, we conduct experiments 

about 700 miles driving at different urban regions with three 

different smartphones (Galaxy Nexus by Samsung, Nexus4 

by LG and iPhone4s by Apple) for over two weeks. 

 It can be seen that the integral results (i.e., the purple 

curve) grows rapidly over time. This is because the 

accumulative errors cause large deviations between the speed 

estimation from the integral value and the true speed. 

Therefore, in order to estimate the vehicle speed accurately, 

the accumulative error must be eliminated. One important 

observation is that the black curve of the difference between 

the integral value from Equ.(2) and the true speed increases 

almost linearly over time, which indicates that the changes 

over time of the acceleration error are very small. These 

results are consistent during our experiments at different 

urban regions with three different smartphones. Thus, if we 

can derive techniques to measure the acceleration error, the 

integral value of the accelerometer’s readings can be 

corrected to get close to the true vehicle speed. Since the 

difference curve between the integral value and the true speed 

is an approximate linear function of time, the acceleration 

error is strongly related to the slope of the curve. If we can 

obtain the true speeds at two time points along the difference 

curve, the slope of the curve could then be calculated and the 

acceleration error could be derived accordingly. However, 

the difference curve is not exactly linear, and slight changes 

of the slope  (i.e., the acceleration error) would affect the 

accuracy of the speed estimation. To sense the slight changes 

over time of the acceleration errors, we should capture as 

many as possible time points, called reference points, where 

the true speed is known, then calculate acceleration errors 

between each two adjacent 
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IV. DESIGN OF SPEED 

 

Fig. 2. System architecture. 

In this section, we present the design of our proposed 

system, SenSpeed, which estimates vehicle speed accurately 

through sensing driving conditions in urban environments. 

SenSpeed does not depend on any pre-deployed 

infrastructure and additional hardware. 

A. System Overview 

The vehicle speed can be estimated by integrating of 

acceleration data over time. However, the accumulative error 

from the biased accelerations causes large deviations 

between the true speed and the estimated speed. In order to 

realize an accurate vehicle speed estimation, SenSpeed 

senses the natural driving conditions to identify the reference 

points, then uses the information of the reference points to 

measure the acceleration error and further eliminates 

accumulative error. 

Our system identifies three kinds of references points, 

making turns, stopping, and passing through uneven road 

surfaces, by sensing natural driving conditions based on 

smart phone sensors.  

1) making turns: A vehicle usually undergoes plenty of 

turns in urban environments. The vehicle speed can be 

inferred according to a principle of the circular movement 

when a vehicle makes a turn. 

 2) stopping: A vehicle stops frequently in urban 

environments because of stop signs, red traffic lights or 

heavy traffic. When a vehicle stops, the vehicle speed is 

determined to be zero.  

3) passing through uneven road surfaces: Speed bumps, 

potholes, and other severe road surfaces are common on 

urban roads. 

 The accelerometer’s readings from smartphones can be 

utilized to infer the vehicle speed, when a car is passing over 

uneven road surfaces. The work flow of SenSpeed is shown 

in Fig.2. SenSpeed uses two kinds of sensors in smartphones, 

accelerometers and gyroscopes, to estimate the vehicle speed. 

The accelerometer is used to monitor the vehicle acceleration 

and the gyroscope is used to monitor the vehicle angular 

speed. Getting the readings from the accelerometer and the 

gyroscope, SenSpeed first performs Coordinate 

Reorientation to align the phone’s coordinate system with the 

vehicle’s. After that, the raw speeds are obtained by 

calculating the integral of the aligned readings from the 

accelerometer in Raw Speed Estimation. Meanwhile, 

SenSpeed senses reference points by analyzing the aligned 

readings from the accelerometer and the gyroscope in 

Sensing Reference Points and infers the vehicle speed at each 

reference point. Next, in Acceleration Error Measurement,the 

acceleration errors between each two adjacent reference 

points are calculated and then used to correct the raw speed 

estimations in Reference Points Correction. Finally, 

SenSpeed outputs high-accuracy speed estimations. In order 

to achieve accurate speed estimations, the speeds at the two 

adjacent reference points need to be known. However, the 

speed at the next reference point is unknown on the real-time 

speed estimation, so the acceleration error between two 

reference points can not be calculated. Since we know the 

changes of the acceleration error over time are very small, 

Acceleration Error Measurement uses the exponential 

moving average to derive the current acceleration error from 

recent histories. Therefore, SenSpeed can provide real-time 

speed estimation of vehicles. 

B. Sensing Reference Points 

To correct speed estimation from the integral of the 

accelerometer’s readings, the acceleration error should first 

be measured. If we know the speed at reference points, the 

acceleration error can be inferred. SenSpeed senses natural 

driving conditions to identify reference points including 

making turns, stopping and passing over uneven road 

surfaces. 

1) Sensing Turns: When a vehicle makes a turn, it 

experiences a centripetal force, which is related to its speed, 

angular speed and turning radius. Thus, by utilizing the 

accelerometer and the gyroscope, we can derive the 

tangential speed of a vehicle. Suppose a car is turning right, 

as is shown in Fig.4, then v = ωR, a = ω2R, and ω = ω, where 

a is the centripetal acceleration, ωis the angular speed of the 

car, R is the turning radius and ω is the angular speed that is 

related to the center of the orbit circle. Thus, we obtain 

v =a/ω’---------------(3) 

Since the centripetal acceleration a and the angular speed ω 

can be obtained from the accelerometer and the gyroscope 

respectively, the speed can be calculated based on Equ.(3). 

Fig.5 plots the angular speed obtained from the gyroscope, 

the speed measurement from Equ.(3) and the speed from an 

OBD-II adapter when a vehicle makes a turn, i.e., at a turn 

reference point. It can be seen that the change of the angular 

speed is very clear at the turn reference point. If the 

readingsfrom the gyroscope exceeded a trained threshold, 

SenSpeed determines the vehicle is making a turn. In 

addition, the values of the speed measurement from Equ.(3) 

at the turn reference point are very close to the ground truth. 

Then, we analyze the speed measurement error at turn 

reference points. A series of experiments are conducted in 

real driving environments.  
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Fig. 3. Illustration of the circular movement when a car 

makes a turn. 

 

2) Sensing Stops: The vehicle speed decreases to zero when a 

vehicle stops, so we can obtain the exact speed at a stop 

reference point. The vehicle stops. Thus, the standard 

deviation of the acceleration on z-axis can be used to detect 

stop reference points. 

3) Sensing Uneven Road Surfaces: Speed bumps, potholes, 

and uneven road surfaces are common in urban 

environments. When a car is passing over uneven road 

surfaces, the accelerometer’s readings from smartphones can 

also be utilized to infer the vehicle speed. we know the time 

interval T between these two peaks, as well as the wheelbase 

W of the vehicle, then the vehicle speed can be measured as 

v = W/T . 

Considering the similarity between these two peaks, we 

use the auto-correlation analysis to find T. Given an 

acceleration sequence on z-axis, {Acc}, auto-correlation of 

lag τ is: 

R(τ) =E[(Acci − μ)(Acci+τ − μ)]σ2 --------(4) 

where μ is the mean value of Acc and σ is the standard 

deviation. Fig.8 also shows the auto-correlation results of the 

accelerometer’s readings on z-axis. Obviously, R(τ) is an 

even function, so R(τ) = R(−τ). To get the T, we need to find 

the maximum peak value except the one at τ = 0, and the 

horizontal distance from the maximum peak to τ = 0 equals to 

T. And for the wheelbase, we can get it from vehicle’s 

product specifications.It can be seen that 80% of 

measurement errors are lower than 1.7mph under the low 

speed (i.e., 0 − 30mph), 80% of measurement errors are lower 

than 2.2mph under the high speed (i.e., 60 − 90mph), and the 

average error is about 1.12mph. Also, we find that the vehicle 

speed affects the measurement accuracy, i.e., the accuracy 

slightly increases as the speed decreases. This is because that 

the accuracy is affected by the sampling rate. For example, 

suppose the vehicle speed is 20mph, the sampling rate of the 

accelerometer is 200Hz and the wheelbase is 3m, then the 

samples between the two wheels passing over a bump or 

pothole is wheelbase speed 

· f frequency ≈ 56 

samples. By contrast, when the vehicle speed is 80mph, the 

number of the samples decreases to 17samples. A smaller 

number of samples causes slightly worse accuracy. However, 

the average vehicle speed in urban area is relatively low 

(under 60mph). Thus the vehicle speed at uneven road 

surfaces can be accurately measured in real driving 

environments. 

C. Eliminating Accumulative Errors 

With the above sensed reference points, once a vehicle 

makes turns, stops or passes over uneven road surfaces, Sen- 

Speed is able to estimate the instant vehicle speed. In order to 

realize an accurate vehicle speed estimation, SenSpeed 

utilizes reference points to qualify the acceleration error and 

eliminate accumulative error.The vehicle starts with zero 

speed, and there are two reference points PA and PB (i.e., the 

vehicle passes the reference point A and B at time Ta and Tb 

respectively). Suppose the integral value of the 

accelerometer’s reading. from zero to time t is S (t) and the 

measured speed at the reference point x is RPS x, the errors of 

the vehicle speed at the reference point a and b are S (Ta) = S 

(Ta) − RPS a and S (Tb) = S (Tb) − RPS b respectively. Since 

the value of acceleration error is nearly a steady constant and 

strongly related to the slope of the S (t) curve, the acceleration 

error between PA and PB can be calculated as: 

˜A=S (Tb) − S (Ta)Tba------------(5) 

where Tba is the interval time between the reference points 

A and B. S (t) between A and B is: 

S (t) = S (t) − S (Ta) − ˜A × (t − Ta)--------(6) 

As a result, the mean estimation error after speed 

correction by using the reference points is 0.65mph. The 

above algorithm uses the information of two adjacent 

reference points to correct the speed estimations between 

these two points.  Since we know that the acceleration error 

changes slightly over time, thus the current acceleration error 

can be derived from the recent reference points. In particular, 

we utilize the exponential moving average to estimate the 

current acceleration error by using the recent reference 

points. When the ith reference point is sensed, the current 

acceleration error ˜A i between the ith and (i + 1)th reference 

point is updated through: 

˜Ai = α · ˜Ai−1 + (1 − α) ×S (Ti) − S (Ti−1)/Ti−1-----(7) 

where α is the weight coefficient. The real-time speed 

estimation between the ith and the (i+1)th reference point is 

corrected by: 

S (t) = S (t) − S (Ti) − ˜Ai+1 × (t − Ti)------- (8) 

We also apply this online algorithm to the same data used in 

Fig.2, and present the corrected speed estimation in Fig.11. 

We observe that there are some small differences between the 

online estimation and the ground truth, which indicates the 

online algorithm has a comparable accuracy when compared 

with the offline algorithm. Although the differences exist, 
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they are very small and the mean estimation error of the 

online speed estimation algorithm is 1.08mph. 

V.IMPLEMENTATION 

MODULES: 

 Obtain the vehicle speed,Sensing Turns,Sensing 

Stops ,Sensing Uneven Road Surfaces,Sending data Alert 

SMS module. 

MODULES DESCSRIPTION: 

Obtain the vehicle speedWe first describe how to obtain 

the vehicle speed from smart phone sensors. The vehicle’s 

acceleration can be obtained from the accelerometer sensor in 

the smart phone when a phone is aligned with the vehicle. 

Suppose the accelerometer’s y-axis is along the moving 

direction of the vehicle. We could then monitor the vehicle 

acceleration by retrieving readings from the accelerometer’s 

y-axis. The vehicle speed can then be calculated from the 

integral of the acceleration data over time. 

Although the basic idea of using smart phone sensors to 

estimate vehicle speed is simple, it is challenging to achieve 

high-accuracy speed estimations. The most obvious problem 

is that the noise from sensor readings cause serious errors in 

the estimation results. Such sensor readings are affected by 

various noise encountered while driving such as engine 

vibrations, white noise, etc. And the estimation errors are 

accumulated when integrating the accelerometer’s readings 

over time. 

In this module, we present the design of our proposed 

system, SenSpeed, which estimates vehicle speed accurately 

through sensing driving conditions in urban environments. 

SenSpeed does not depend on any pre-deployed 

infrastructure and additional hardware. 

Sensing Turns 

The vehicle speed can be estimated by integrating of 

acceleration data over time. However, the accumulative error 

from the biased accelerations causes large deviations 

between the true speed and the estimated speed. In order to 

realize an accurate vehicle speed estimation, SenSpeed 

senses the natural driving conditions to identify the reference 

points, then uses the information of the reference points to 

measure the acceleration error and further eliminates 

accumulative error. 

Our system identifies three kinds of references points, 

making turns, stopping, and passing through uneven road 

surfaces, by sensing natural driving conditions based on 

smart phone sensors.A vehicle usually undergoes plenty of 

turns in urban environments. The vehicle speed can be 

inferred according to a principle of the circular movement 

when a vehicle makes a turn. When a vehicle makes a turn, it 

experiences a centripetal force, which is related to its speed, 

angular speed and turning radius. Thus, by utilizing the 

accelerometer and the gyroscope, we can derive the 

tangential speed of a vehicle. 

Sensing Stops 

A vehicle stops frequently in urban environments because 

of stop signs, red traffic lights or heavy traffic. When a 

vehicle stops, the vehicle speed is determined to be zero. The 

vehicle speed decreases to zero when a vehicle stops, so we 

can obtain the exact speed at a stop reference point. Based on 

our observation, the data pattern of the acceleration on the 

vehicle’s z-axis for stop is remarkably different from that of 

moving. It plots the readings from the accelerometer’s z-axis 

when the vehicle is moving and stops. It can be seen that the 

jitter of the acceleration on z-axis is almost disappeared and 

the standard deviation of the acceleration on z-axis remains 

low while the vehicle stops. Thus, the standard deviation of 

the acceleration on z-axis can be used to detect stop reference 

points. The standard deviation of the acceleration collected 

by smart phone is calculated in a small sliding window 

Sensing Uneven Road Surfaces 

Speed bumps, potholes, and other severe road surfaces are 

common on urban roads. The accelerometer’s readings from 

smartphones can be utilized to infer the vehicle speed, when a 

car is passing over uneven road surfaces. Speed bumps, 

potholes, and uneven road surfaces are common in urban 

environments. When a car is passing over uneven road 

surfaces, the accelerometer’s readings from smartphones can 

also be utilized to infer the vehicle speed. It shows the 

accelerations on the car’s z-axis, when a car is passing over a 

speed bump. The front wheels hit the bump first and then the 

rear wheels. 

Sending data Alert SMS module 

In this module, based on the variation of directions an alert 

messages is sent to the Owner (The number which is saved in 

app default, which can be changed) with a data say car 

number or any etc. The module, is triggered when it crosses 

the threshold limit of the Reference points. The mobile 

should have sufficient balance to send the SMS. 

INPUT DESIGN 

The input design is the link between the information 

system and the user. It comprises the developing 

specification and procedures for data preparation and those 

steps are necessary to put transaction data in to a usable form 

for processing can be achieved by inspecting the computer to 

read data from a written or printed document or it can occur 

by having people keying the data directly into the system. 

The design of input focuses on controlling the amount of 

input required, controlling the errors, avoiding delay, 

avoiding extra steps and keeping the process simple. The 

input is designed in such a way so that it provides security 

and ease of use with retaining the privacy. Input Design 

considered the following things: 

What data should be given as input?How the data should be 

arranged or coded?The dialog to guide the operating 

personnel in providing input.Methods for preparing input 

validations and steps to follow when error occur. 

OUTPUT DESIGN 
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A quality output is one, which meets the requirements of 

the end user and presents the information clearly. In any 

system results of processing are communicated to the users 

and to other system through outputs. In output design it is 

determined how the information is to be displaced for 

immediate need and also the hard copy output. It is the most 

important and direct source information to the user. Efficient 

and intelligent output design improves the system’s 

relationship to help user decision-making. 

1. Designing computer output should proceed in an organized, 

well thought out manner; the right output must be developed 

while ensuring that each output element is designed so that 

people will find the system can use easily and effectively. 

When analysis design computer output, they should Identify 

the specific output that is needed to meet the requirements. 

2. Select methods for presenting information. 

3. Create document, report, or other formats that contain 

information produced by the system. 

The output form of an information system should accomplish 

one or more of the following objectives.Convey information 

about past activities, current status or projections of the 

Future. Signal important events, opportunities, problems, or 

warnings. Trigger an action. Confirm an action. 

In fig 4 it is showing the result of our present system where 

it is calculating the longitude and latitude values and when it 

reaches a maximum speed a automated message will be 

transferred to the registered mobile. 

 

 

 

 

 

 

Fig 4: Showing the result of our present system. 

V. CONCLUSION 

In this paper, we address the problem of performing accurate 

vehicle speed estimation in urban environments.Most 

accelerometers are Micro-Electro-Mechanical Sensors 

(MEMS). The basic principle of operation behind the MEMS 

accelerometer is the displacement of a small proof mass 

etched into the silicon surface of the integrated circuit and 

suspended by small beams. Consistent with Newton's second 

law of motion (F = ma), as an acceleration is applied to the 

device, a force develops which displaces the mass. The 

support beams act as a spring, and the fluid (usually air) 

trapped inside the IC acts as a damper, resulting in a second 

order lumped physical system. This is the source of the 

limited operational bandwidth and non-uniform frequency 

response of accelerometers. 
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